A Functional Role for Nlrp6 in Intestinal Inflammation and Tumorigenesis
A Functional Role for Nlrp6 in Intestinal Inflammation and Tumorigenesis
Abstract The nucleotide-binding oligomerization domain-like receptor (NLR) family member, Nlrp6, has been implicated in inflammasome signaling to activate caspase-1, which is essential for the production of mature IL-1β and IL-18. However, a function for Nlrp6 in vivo has never been demonstrated. Due to the relative high expression of Nlrp6 in intestinal tissue, we hypothesized that Nlrp6 has a role in intestinal homeostasis. Indeed, Nlrp6-deficient mice are more susceptible to chemically induced colitis as well as colitis-induced tumorigenesis than wild-type (WT) mice. Nlrp6-deficient mice exhibited significantly more inflammation within the colon than WT mice after dextran sulfate sodium treatment. Their inability to resolve inflammation and repair damaged epithelium as efficiently as WT mice resulted in prolonged increases in epithelial proliferative activity that likely underlie the increased propensity for tumors in these mice during chronic inflammation. We further show that the activity of Nlrp6 in hematopoietic cells is critical for protection against inflammation-related colon tumorigenesis. This study highlights the importance of NLR function in maintaining intestinal homeostasis to prevent the development of aberrant inflammation and tumor development within the colon.
- University of Michigan–Flint United States
- GlaxoSmithKline (United States) United States
- University of Michigan–Ann Arbor United States
- Cellzome, GSK, Middlesex, UK.
Inflammation, Mice, Knockout, Receptors, Cell Surface, Colitis, Intestines, Colonic Diseases, Intestinal Diseases, Mice, Neoplasms, Animals, Homeostasis
Inflammation, Mice, Knockout, Receptors, Cell Surface, Colitis, Intestines, Colonic Diseases, Intestinal Diseases, Mice, Neoplasms, Animals, Homeostasis
2 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).385 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
