Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Vascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Vascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Vascular and Endovascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Vascular and Endovascular Surgery
Article . 2016
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Vascular Surgery
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Vascular and Endovascular Surgery
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The Receptor for Advanced Glycation End Products (Rage) and Its Ligands in Plasma and Infrainguinal Bypass Vein

Authors: Malmstedt, J.; Frebelius, S.; Lengquist, M.; Jörneskog, G.; Wang, J.; Swedenborg, J.;

The Receptor for Advanced Glycation End Products (Rage) and Its Ligands in Plasma and Infrainguinal Bypass Vein

Abstract

The aim was to investigate whether RAGE and its ligands are associated with infrainguinal bypass outcome in patients with and without diabetes.This was a prospective observational cohort. Patients (n = 68) with (n = 38) and without (n = 30) diabetes undergoing infrainguinal vein bypass for peripheral arterial disease were followed for 3 years. Endosecretory RAGE (esRAGE), S100A12, advanced glycation end products, and carboxymethyl-lysine (CML) were determined in plasma using ELISA. The influence of plasma levels on the main outcome (amputation free survival) was evaluated using Cox proportional hazard analysis. Plasma esRAGE, CML, and S100A12 in healthy controls (n = 30) without cardiovascular disease matched for sex and age were compared with patients, using the Mann-Whitney U test. Veins from bypass surgery procedures were stained and S100A12, RAGE, AGE, and CML were determined using immunohistochemistry.Forty-six patients survived with an intact leg during follow up. Seventeen died (median survival time 702 days, IQR 188-899 day), and six had amputations. High plasma S100A12 was associated with reduced amputation free survival (hazard ratio [HR] 2.99; 95% CI 1.24-7.24) when comparing levels above the 75th percentile with levels below. The increased risk was unchanged adjusting for age, sex, and diabetes. Diabetic patients had higher plasma S100A12 (11.75 ng/mL; 95% CI 8.12-15.38 ng/mL) than non-diabetic patients (5.0141 ng/mL; 95% CI 3.62-6.41 ng/mL), whereas plasma CML, esRAGE, and AGE were similar. Plasma CML and S100A12 were higher in patients than in controls (1.25 μg/mL, 95% CI 1.18-1.32 μg/mL vs. 0.8925 μg/mL, 95% CI 0.82-0.96 μg/mL; and 8.7 μg/mL, 95% CI 6.52-10.95 μg/mL vs. 3.47 μg/mL, 95% CI 2.95-3.99 μg/mL, respectively). The proportion of vein tissue stained for AGE (21%), RAGE (5%), CML (9%) and S100A12 (3%), were similar in patients with and without diabetes.Plasma S100A12 and CML are elevated in peripheral arterial disease and markers of RAGE and its ligands are found in vein used for bypass. This indicates a role for S100A12, CML, and RAGE in peripheral arterial disease complications by activation of the RAGE system.

Keywords

Medicine(all), Adult, Glycation End Products, Advanced, Male, Reoperation, Lysine, Receptor for Advanced Glycation End Products, Kaplan-Meier Estimate, Middle Aged, Ligands, Amputation, Surgical, Disease-Free Survival, Peripheral Arterial Disease, Risk Factors, Humans, Female, Prospective Studies, Biomarkers, Diabetic Angiopathies, Aged, Proportional Hazards Models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
hybrid