Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

CRM1-dependent, but not ARE-mediated, nuclear export ofIFN-α1mRNA

Authors: Tominori, Kimura; Iwao, Hashimoto; Takahiro, Nagase; Jun-Ichi, Fujisawa;

CRM1-dependent, but not ARE-mediated, nuclear export ofIFN-α1mRNA

Abstract

While the bulk of cellular mRNA is known to be exported by the TAP pathway, export of specific subsets of cellular mRNAs may rely on chromosome region maintenance 1 (CRM1). One line of evidence supporting this hypothesis comes from the study of mRNAs of certain early response genes (ERGs) containing the adenylate uridylate-rich element (ARE) in their 3′ untranslated regions (3′ UTRs). It was reported that HuR-mediated nuclear export of these mRNAs was CRM1-dependent under certain stress conditions. To further examine potential CRM1 pathways for other cellular mRNAs under stress conditions, the nuclear export of human interferon-α1 (IFN-α1) mRNA, an ERG mRNA induced upon viral infection, was studied. Overproduction of human immunodeficiency virus type 1 Rev protein reduced the expression level of the co-transfected IFN-α1 gene. This inhibitory effect, resulting from nuclear retention of IFN-α1 mRNA, was reversed when rev had a point mutation that made its nuclear export signal unable to associate with CRM1. Leptomycin B sensitivity experiments revealed that the cytoplasmic expression of IFN-α1 mRNA was arrested upon inhibition of CRM1. This finding was further supported by overexpression of ΔCAN, a defective form of the nucleoporin Nup214/CAN that inhibits CRM1 in a dominant-negative manner, which resulted in the effective inhibition of IFN-α1 gene expression. Subsequent RNA fluorescence in situ hybridisation and immunocytochemistry demonstrated that the IFN-α1 mRNA was colocalised with CRM1, but not with TAP, in the nucleus. These results therefore imply that the nuclear export of IFN-α1 mRNA is mediated by CRM1. However, truncation of the 3′ UTR did not negatively affect the nuclear export of IFN-α1 mRNA that lacked the ARE, unexpectedly indicating that this CRM1-dependent mRNA export may not be mediated via the ARE.

Keywords

Cell Nucleus, Cytoplasm, Adenine, Histocompatibility Antigens Class I, Active Transport, Cell Nucleus, Interferon-alpha, Receptors, Cytoplasmic and Nuclear, Karyopherins, Regulatory Sequences, Ribonucleic Acid, RNA Transport, Nuclear Pore Complex Proteins, Gene Products, rev, Mutation, Fatty Acids, Unsaturated, Humans, ATP-Binding Cassette Transporters, RNA, Messenger, 3' Untranslated Regions, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
bronze