Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Medicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Medicine
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Medicine
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction

Authors: Yingjiang, Zhou; Justin, Lee; Candace M, Reno; Cheng, Sun; Sang Won, Park; Jason, Chung; Jaemin, Lee; +4 Authors

Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction

Abstract

To date, the only known role of the spliced form of X-box-binding protein-1 (XBP-1s) in metabolic processes has been its ability to act as a transcription factor that regulates the expression of genes that increase the endoplasmic reticulum (ER) folding capacity, thereby improving insulin sensitivity. Here we show that XBP-1s interacts with the Forkhead box O1 (FoxO1) transcription factor and directs it toward proteasome-mediated degradation. Given this new insight, we tested modest hepatic overexpression of XBP-1s in vivo in mouse models of insulin deficiency or insulin resistance and found it improved serum glucose concentrations, even without improving insulin signaling or ER folding capacity. The notion that XBP-1s can act independently of its role in the ER stress response is further supported by our finding that in the severely insulin resistant ob/ob mouse strain a DNA-binding-defective mutant of XBP-1s, which does not have the ability to increase ER folding capacity, is still capable of reducing serum glucose concentrations and increasing glucose tolerance. Our results thus provide the first evidence to our knowledge that XBP-1s, through its interaction with FoxO1, can bypass hepatic insulin resistance independent of its effects on ER folding capacity, suggesting a new therapeutic approach for the treatment of type 2 diabetes.

Related Organizations
Keywords

Blood Glucose, X-Box Binding Protein 1, Forkhead Box Protein O1, Hydrolysis, Forkhead Transcription Factors, Regulatory Factor X Transcription Factors, Receptor, Insulin, DNA-Binding Proteins, Disease Models, Animal, Mice, Glucose, Liver, Mutation, Animals, Homeostasis, Insulin Resistance, Phosphorylation, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    257
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
257
Top 1%
Top 10%
Top 1%
bronze