Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article
Data sources: UnpayWall
Biochemistry
Article . 2015 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2015
versions View all 2 versions

Evidence for the Kinetic Partitioning of Polymerase Activity on G-Quadruplex DNA

Authors: Sarah, Eddy; Leena, Maddukuri; Amit, Ketkar; Maroof K, Zafar; Erin E, Henninger; Zachary F, Pursell; Robert L, Eoff;

Evidence for the Kinetic Partitioning of Polymerase Activity on G-Quadruplex DNA

Abstract

We have investigated the action of the human DNA polymerase ε (hpol ε) and η (hpol η) catalytic cores on G-quadruplex (G4) DNA substrates derived from the promoter of the c-MYC proto-oncogene. The translesion enzyme hpol η exhibits a 6.2-fold preference for binding to G4 DNA over non-G4 DNA, while hpol ε binds both G4 and non-G4 substrates with nearly equal affinity. Kinetic analysis of single-nucleotide insertion by hpol η reveals that it is able to maintain >25% activity on G4 substrates compared to non-G4 DNA substrates, even when the primer template junction is positioned directly adjacent to G22 (the first tetrad-associated guanine in the c-MYC G4 motif). Surprisingly, hpol η fidelity increases ~15-fold when copying G22. By way of comparison, hpol ε retains ~4% activity and has a 33-fold decrease in fidelity when copying G22. The fidelity of hpol η is ~100-fold greater than that of hpol ε when comparing the misinsertion frequencies of the two enzymes opposite a tetrad-associated guanine. The kinetic differences observed for the B- and Y-family pols on G4 DNA support a model in which a simple kinetic switch between replicative and TLS pols could help govern fork progress during G4 DNA replication.

Related Organizations
Keywords

DNA Replication, Base Pair Mismatch, DNA Polymerase II, DNA-Directed DNA Polymerase, Proto-Oncogene Mas, Substrate Specificity, G-Quadruplexes, Kinetics, Humans, DNA Primers, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Average
Top 10%
bronze