Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress

Authors: Changrong, Ge; Alexander, Georgiev; Anders, Öhman; Åke, Wieslander; Amélie A, Kelly;

Tryptophan Residues Promote Membrane Association for a Plant Lipid Glycosyltransferase Involved in Phosphate Stress

Abstract

Chloroplast membranes contain a substantial excess of the nonbilayer-prone monogalactosyldiacylglycerol (GalDAG) over the biosynthetically consecutive, bilayer-forming digalactosyldiacylglycerol (GalGalDAG), yielding a high membrane curvature stress. During phosphate shortage, plants replace phospholipids with GalGalDAG to rescue phosphate while maintaining membrane homeostasis. Here we investigate how the activity of the corresponding glycosyltransferase (GT) in Arabidopsis thaliana (atDGD2) depends on local bilayer properties by analyzing structural and activity features of recombinant protein. Fold recognition and sequence analyses revealed a two-domain GT-B monotopic structure, present in other plant and bacterial glycolipid GTs, such as the major chloroplast GalGalDAG GT atDGD1. Modeling led to the identification of catalytically important residues in the active site of atDGD2 by site-directed mutagenesis. The DGD synthases share unique bilayer interface segments containing conserved tryptophan residues that are crucial for activity and for membrane association. More detailed localization studies and liposome binding analyses indicate differentiated anchor and substrate-binding functions for these separated enzyme interface regions. Anionic phospholipids, but not curvature-increasing nonbilayer lipids, strongly stimulate enzyme activity. From our studies, we propose a model for bilayer "control" of enzyme activity, where two tryptophan segments act as interface anchor points to keep the substrate region close to the membrane surface. Binding of the acceptor substrate is achieved by interaction of positive charges in a surface cluster of lysines, arginines, and histidines with the surrounding anionic phospholipids. The diminishing phospholipid fraction during phosphate shortage stress will then set the new GalGalDAG/phospholipid balance by decreasing stimulation of atDGD2.

Keywords

Arabidopsis Proteins, Sequence Analysis, Protein, Stress, Physiological, Cell Membrane, Arabidopsis, Tryptophan, Membrane Proteins, Galactosyltransferases, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
gold