Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The IGF2 Receptor Is a USF2-specific Target in Nontumorigenic Mammary Epithelial Cells but Not in Breast Cancer Cells

Authors: Snehalata A. Pawar; Michèle Sawadogo; Marilyn N. Szentirmay; Hui-Xin Yang; Charles Vinson;

The IGF2 Receptor Is a USF2-specific Target in Nontumorigenic Mammary Epithelial Cells but Not in Breast Cancer Cells

Abstract

The antiproliferative activities of the USF proteins and the frequent loss of USF function in cancer cells suggest a role for these ubiquitous transcription factors in tumor suppression. However, the cellular targets that mediate the effects of USF on cellular proliferation and transformation remain uncharacterized. IGF2R, with multiple functions in both normal growth and cancer, was investigated here as a possible USF target in both nontumorigenic and tumorigenic breast cell lines. The 5'-flanking sequences of the human IGF2R gene contain multiple, highly conserved E boxes almost identical to the consensus USF DNA-binding sequence. These E boxes were found to be essential for IGF2R promoter activity in the nontumorigenic mammary epithelial cell line MCF-10A. USF1 and USF2 bound the IGF2R promoter in vitro, and both USF1 and USF2, but not c-Myc, were present within the IGF2R promoter-associated chromatin in vivo. Overexpressed USF2, but not USF1, transactivated the IGF2R promoter, and IGF2R mRNA was markedly decreased by expression of a USF-specific dominant negative mutant, identifying IGF2R as a USF2 target. IGF2R promoter-driven expression was USF-independent in both MCF-7 and MDA-MB-231 breast cancer cell lines, suggesting that a defect in USF function may contribute to down-regulation of IGF2R expression in cancer cells.

Keywords

Transcriptional Activation, Binding Sites, Base Sequence, Molecular Sequence Data, Breast Neoplasms, Epithelial Cells, Receptor, IGF Type 2, DNA-Binding Proteins, Proto-Oncogene Proteins c-myc, Gene Expression Regulation, Cell Line, Tumor, Humans, Upstream Stimulatory Factors, Female, Breast, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%
gold