Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Jumonji represses α-cardiac myosin heavy chain expression via inhibiting MEF2 activity

Authors: Matthew R. Mysliwiec; Youngsook Lee; Seog-Youn Kang; Tae-gyun Kim; Jooyoung Jung;

Jumonji represses α-cardiac myosin heavy chain expression via inhibiting MEF2 activity

Abstract

Expression of alpha-cardiac myosin heavy chain gene (alphaMHC) is developmentally regulated in normal embryonic hearts and down-regulated in cardiac myopathy and failing hearts. Jumonji (JMJ) has been shown to be critical for normal cardiovascular development and functions as a transcriptional repressor. Here, we demonstrate that JMJ represses alphaMHC expression through inhibition of myocyte enhancer factor 2 (MEF2) activity. In primary cardiomyocytes, overexpression of JMJ leads to marked reduction of endogenous alphaMHC expression. JMJ represses the synergistic activation of alphaMHC by MEF2 and thyroid hormone receptor (TR). Interestingly, JMJ inhibits transcriptional activities of all MEF2 isoforms, but not the TR-dependent activation. The transcriptional repression domain of JMJ interacts with the N-terminal part of MEF2A, resulting in the repression of MEF2A activities. These results suggest that JMJ represses alphaMHC expression via protein-protein interaction with MEF2A.

Keywords

Myosin Heavy Chains, MEF2 Transcription Factors, Polycomb Repressive Complex 2, Gene Expression Regulation, Developmental, Nerve Tissue Proteins, Recombinant Proteins, Rats, DNA-Binding Proteins, Mice, Animals, Newborn, Myogenic Regulatory Factors, Animals, Myocytes, Cardiac, Cloning, Molecular, Cells, Cultured, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%