TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice
TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice
Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3(-/-) mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3(-/-) mice but not Tlr7(-/-) mice. Consequently, central sensitization-driven pain hypersensitivity, but not acute pain, was impaired in Tlr3(-/-) mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3(-/-) mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment.
- Duke University United States
- Harvard University United States
- Brigham and Women's Faulkner Hospital United States
- Johns Hopkins University United States
Mice, Knockout, Membrane Glycoproteins, Sensory Receptor Cells, Pruritus, Action Potentials, Pain, TRPV Cation Channels, Synaptic Transmission, Toll-Like Receptor 3, Mice, Gastrin-Releasing Peptide, Gene Expression Regulation, Spinal Cord, Toll-Like Receptor 7, Ganglia, Spinal, Gene Knockdown Techniques, Animals
Mice, Knockout, Membrane Glycoproteins, Sensory Receptor Cells, Pruritus, Action Potentials, Pain, TRPV Cation Channels, Synaptic Transmission, Toll-Like Receptor 3, Mice, Gastrin-Releasing Peptide, Gene Expression Regulation, Spinal Cord, Toll-Like Receptor 7, Ganglia, Spinal, Gene Knockdown Techniques, Animals
33 Research products, page 1 of 4
- 2017IsRelatedTo
- 2006IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2006IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).144 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
