Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Evolution
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

ADH evolution and the phylogenetic footprint

Authors: Francisco José Ayala; Robert L. Dorit;
Abstract

The evolution of any given protein reflects the interplay between proximal selective forces involving the conservation of protein structure and function and more general populational factors that shape the action and efficiency of natural selection. In an attempt to address that interplay, we have analyzed patterns of amino acid replacement within a well-conserved molecule, alcohol dehydrogenase (ADH), in the Drosophilidae. A sliding window, moved along the protein sequence in order to quantify the extent of change at each amino acid position, reveals heterogeneous amounts of replacement across the molecule when all ADH sequences are analyzed simultaneously. Surprisingly, the replacement profile for ADH differs significantly in the melanogaster, mulleri, and Hawaiian subgroups, reflecting the imprint of the differing evolutionary histories of each of these assemblages on the evolution of this conservative molecule.

Related Organizations
Keywords

Alcohol Dehydrogenase, Animals, Drosophila, Codon, Biological Evolution, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average