Association of genetic variants with chronic kidney disease in individuals with different lipid profiles
pmid: 19578796
Association of genetic variants with chronic kidney disease in individuals with different lipid profiles
The purpose of the present study was to identify genetic variants that confer susceptibility to chronic kidney disease (CKD) in individuals with low or high serum concentrations of triglycerides (TG), high-density lipoprotein (HDL)-cholesterol, or low-density lipoprotein (LDL)-cholesterol, thereby contributing to the personalized prevention of CKD in such individuals. The study population comprised 5944 Japanese individuals, including 1706 subjects with CKD [estimated glomerular filtration rate (eGFR)or=60 ml/min/1.73 m2). The genotypes for 296 polymorphisms of 202 candidate genes were determined. The Chi-square test, multivariable logistic regression analysis with adjustment for covariates, and a stepwise forward selection procedure revealed that seven different polymorphisms were significantly (P<0.005) associated with the prevalence of CKD in individuals with low or high serum concentrations of TG or HDL- or LDL-cholesterol: the Aright curved arrow G (Glu23Lys) polymorphism of KCNJ11 and the 125592Cright curved arrow A (Thr431Asn) polymorphism of ROCK2 in individuals with low serum TG; the 734Cright curved arrow T (Thr254Ile) polymorphism of ACAT2 and the Cright curved arrow G (Gln27Glu) polymorphism of ADRB2 in individuals with high serum TG; the -1607/1Gright curved arrow 2G polymorphism of MMP1 in individuals with low serum HDL-cholesterol; the Gright curved arrow A (Val158Met) polymorphism of COMT in individuals with low serum LDL-cholesterol; the 584Gright curved arrow A (Gln192Arg) polymorphism of PON1 in individuals with high serum LDL-cholesterol. No polymorphism was associated with CKD in individuals with high serum HDL-cholesterol. These results suggest that polymorphisms associated with CKD may differ among individuals with different lipid profiles. Stratification of subjects according to lipid profiles may thus be important for personalized prevention of CKD based on genetic information.
- Mie University Japan
- Inabe General Hospital Japan
Male, Chi-Square Distribution, Genotype, Aryldialkylphosphatase, Cholesterol, HDL, Genetic Variation, Cholesterol, LDL, Middle Aged, Lipids, Logistic Models, Gene Frequency, Multivariate Analysis, Humans, Kidney Failure, Chronic, ATP-Binding Cassette Transporters, Female, Genetic Predisposition to Disease, Matrix Metalloproteinase 1, ATP Binding Cassette Transporter 1, Aged
Male, Chi-Square Distribution, Genotype, Aryldialkylphosphatase, Cholesterol, HDL, Genetic Variation, Cholesterol, LDL, Middle Aged, Lipids, Logistic Models, Gene Frequency, Multivariate Analysis, Humans, Kidney Failure, Chronic, ATP-Binding Cassette Transporters, Female, Genetic Predisposition to Disease, Matrix Metalloproteinase 1, ATP Binding Cassette Transporter 1, Aged
999 Research products, page 1 of 100
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
