Binding selectivity of rhizoxin, phomopsin A, vinblastine, and ansamitocin P-3 to fungal tubulins: Differential interactions of these antimitotic agents with brain and fungal tubulins
pmid: 1530630
Binding selectivity of rhizoxin, phomopsin A, vinblastine, and ansamitocin P-3 to fungal tubulins: Differential interactions of these antimitotic agents with brain and fungal tubulins
The binding of four potent antimitotic agents, rhizoxin (RZX), phomopsin A (PMS-A), ansamitocin P-3 (ASMP-3), and vinblastine (VLB), to tubulins from RZX-sensitive and -resistant strains of Aspergillus nidulans, Schizosaccharomyces pombe, and Saccharomyces cerevisiae was investigated. Mycelial extracts to which RZX could bind contained beta-tubulin with Asn as the 100th amino acid residue (Asn-100) in all cases, and those without affinity for RZX contained beta-tubulins with either Ile-100 or Val-100. Though PMS-A shares the same binding site as RZX and ASMP-3 on porcine brain tubulin (Asn-100), only ASMP-3 bound Asn-100 fungal tubulins in a competitive manner with respect to RZX. PMS-A and VLB, which strongly bind to porcine brain tubulin, did not bind to any of the fungal mycelial extracts examined. The results indicate differential interactions of these antimitotic agents with brain and fungal tubulins.
- University of Tokyo Japan
Brain Chemistry, Binding Sites, Swine, Fungi, Brain, Antineoplastic Agents, Saccharomyces cerevisiae, Mycotoxins, Vinblastine, Binding, Competitive, Aspergillus nidulans, Lactones, Tubulin, Schizosaccharomyces, Animals, Maytansine, Macrolides
Brain Chemistry, Binding Sites, Swine, Fungi, Brain, Antineoplastic Agents, Saccharomyces cerevisiae, Mycotoxins, Vinblastine, Binding, Competitive, Aspergillus nidulans, Lactones, Tubulin, Schizosaccharomyces, Animals, Maytansine, Macrolides
2 Research products, page 1 of 1
- 1990IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
