Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature‐sensitive mutants of Arabidopsis

Authors: Hiroaki, Tamaki; Mineko, Konishi; Yasufumi, Daimon; Mitsuhiro, Aida; Masao, Tasaka; Munetaka, Sugiyama;

Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature‐sensitive mutants of Arabidopsis

Abstract

SummaryAdventitious organogenesis in plant tissue culture involves de novo formation of apical meristems and should therefore provide important information about the fundamentals of meristem gene networks. We identified novel factors required for neoformation of the shoot apical meristem (SAM) through an analysis of shoot regeneration in root initiation defective3 (rid3) and root growth defective3 (rgd3) temperature‐sensitive mutants of Arabidopsis. After induction of callus to regenerate shoots, cell division soon ceased and was then reactivated locally in the surface region, resulting in formation of mounds of dense cells in which adventitious‐bud SAMs were eventually constructed. The rgd3 mutation inhibited reactivation of cell division and suppressed expression of CUP‐SHAPED COTYLEDON1 (CUC1), CUC2 and SHOOT MERISTEMLESS (STM). In contrast, the rid3 mutation caused excess ill‐controlled cell division on the callus surface. This was intimately related to enhanced and broadened expression of CUC1. Positional cloning revealed that the RGD3 and RID3 genes encode BTAF1 (a kind of TATA‐binding protein‐associated factor) and an uncharacterized WD‐40 repeat protein, respectively. In the early stages of shoot regeneration, RGD3 was expressed (as was CUC1) in the developing cell mounds, whereas RID3 was expressed outside the cell mounds. When RID3 was over‐expressed artificially, the expression levels of CUC1 and STM were significantly reduced. Taken together, these findings show that both negative regulation by RID3 and positive regulation by RGD3 of the CUC–STM pathway participate in proper control of cell division as a prerequisite for SAM neoformation.

Keywords

DNA, Plant, Arabidopsis Proteins, Genetic Complementation Test, Meristem, Molecular Sequence Data, Arabidopsis, Temperature, Chromosome Mapping, Sequence Analysis, DNA, Genes, Plant, Gene Expression Regulation, Plant, Mutation, Amino Acid Sequence, Cloning, Molecular, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze