Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Oral Bio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Oral Biology
Article . 1992 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Localization of glycosylated matrix proteins in secretory porcine enamel and their possible functional roles in enamel mineralization

Authors: H, Akita; M, Fukae; S, Shimoda; T, Aoba;

Localization of glycosylated matrix proteins in secretory porcine enamel and their possible functional roles in enamel mineralization

Abstract

The present study was undertaken to investigate glycosylation of porcine enamel proteins secreted in the secretory stage of amelogenesis and to gain insight into functional roles of glycosylated proteins in enamel mineralization. Enamel proteins, isolated from various zones of the secretory enamel, were separated by SDS-PAGE and then transferred on to a nitrocellulose membrane. The transblotted proteins were visualized with either antibodies against porcine amelogenins or various biotin-conjugated lectins. The lectins used were Con-A, GS-II, STA, WGA, s-WGA, GS-I, MPA, VVA, PNA, RCA-I, DBA, SJA, UEA-I, Lotus-A and LPA. The results of the immuno- and lectin blottings revealed that most of the lectins did not bind to porcine amelogenins, while a large number of non-amelogenins having various molecular masses were stained strongly with the conjugated WGA, Con A and MPA lectins. On the basis of the binding specificity with the lectins, porcine non-amelogenins were classified into two groups: WGA (and Con A)-binding moieties at 60-90 kDa (WGA-HMW); and MPA-binding moieties at 13-17 kDa (MPA-LMW). These two groups of non-amelogenins differed distinctly in terms of their localization and stability in the secretory tissue and their adsorption properties onto hydroxyapatite. The WGA-HMW were concentrated in the outer region adjacent to the ameloblasts and disappeared (due to degradation) in the underlying inner secretory enamel. In contrast, the MPA-LMW were found in all zones of the secretory enamel and their quantity remained relatively constant. Histochemical studies using FITC-conjugated WGA and MPA showed that the fluorescence-labelling of WGA was localized in the core region of prism rods, while the fluorescence-labelling of MPA was locally limited at the rim of prism rods or at the prism sheath. In separate adsorption studies, it was found that the WGA-HMW, as well as the intact amelogenins, displayed a high adsorption affinity on to apatite crystals, whereas the MPA-LMW showed only marginal adsorption on to apatitic surfaces. The overall results indicate that part of the heterogeneity found in porcine enamel proteins can be ascribed to variations of carbohydrate moieties attached to non-amelogenins.(ABSTRACT TRUNCATED AT 400 WORDS)

Related Organizations
Keywords

Glycosylation, Amelogenin, Histocytochemistry, Swine, Enamel Organ, Durapatite, Dental Enamel Proteins, Amelogenesis, Lectins, Chromatography, Gel, Animals, Electrophoresis, Polyacrylamide Gel, Adsorption, Hydroxyapatites, Dental Enamel, Tooth Calcification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Average
Top 10%
Top 10%