Increased Hippocampal Neurogenesis and Accelerated Response to Antidepressants in Mice with Specific Deletion of CREB in the Hippocampus: Role of cAMP Response-Element Modulator τ
Increased Hippocampal Neurogenesis and Accelerated Response to Antidepressants in Mice with Specific Deletion of CREB in the Hippocampus: Role of cAMP Response-Element Modulator τ
The transcription factor cAMP response element-binding protein (CREB) has been implicated in the pathophysiology of depression as well as in the efficacy of antidepressant treatment. However, altering CREB levels appears to have differing effects on anxiety- and depression-related behaviors, depending on which brain region is examined. Furthermore, many manipulations of CREB lead to corresponding changes in other CREB family proteins, and the impact of these changes has been largely ignored. To further investigate the region-specific importance of CREB in depression-related behavior and antidepressant response, we usedCrebloxP/loxPmice to localize CREB deletion to the hippocampus. In an assay sensitive to chronic antidepressant response, the novelty-induced hypophagia procedure, hippocampal CREB deletion, did not alter the response to chronic antidepressant treatment. In contrast, mice with hippocampal CREB deletion responded to acute antidepressant treatment in this task, and this accelerated response was accompanied by an increase in hippocampal neurogenesis. Upregulation of the CREB-family protein cAMP response-element modulator (CREM) was observed after CREB deletion. Viral overexpression of the activator isoform of CREM, CREMτ, in the hippocampus also resulted in an accelerated response to antidepressants as well as increased hippocampal neurogenesis. This is the first demonstration of CREMτ within the brain playing a role in behavior and specifically in behavioral outcomes following antidepressant treatment. The current results suggest that activation of CREMτ may provide a means to accelerate the therapeutic efficacy of current antidepressant treatment.
- University of Pennsylvania United States
Doublecortin Domain Proteins, Microinjections, Green Fluorescent Proteins, Desipramine, Mice, Transgenic, Fear, Dependovirus, Motor Activity, CREB-Binding Protein, Hippocampus, Antidepressive Agents, Cyclic AMP Response Element Modulator, Mice, Inbred C57BL, Mice, Bromodeoxyuridine, Gene Expression Regulation, Exploratory Behavior, Animals, Maze Learning, Microtubule-Associated Proteins
Doublecortin Domain Proteins, Microinjections, Green Fluorescent Proteins, Desipramine, Mice, Transgenic, Fear, Dependovirus, Motor Activity, CREB-Binding Protein, Hippocampus, Antidepressive Agents, Cyclic AMP Response Element Modulator, Mice, Inbred C57BL, Mice, Bromodeoxyuridine, Gene Expression Regulation, Exploratory Behavior, Animals, Maze Learning, Microtubule-Associated Proteins
23 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
