Mutations in many genes affect aggressive behavior in Drosophila melanogaster
Mutations in many genes affect aggressive behavior in Drosophila melanogaster
Abstract Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line. Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology. Conclusion This study reveals that many more genes than previously suspected affect aggressive behavior, and that these genes have widespread pleiotropic effects. Given the conservation of aggressive behavior among different animal species, these are novel candidate genes for future study in other animals, including humans.
- North Carolina State University United States
- Katholieke Universiteit Leuven Belgium
- North Carolina Agricultural and Technical State University United States
- NORTH CAROLINA STATE UNIVERSITY United States
- Virginia Commonwealth University United States
Agricultural and Biological Sciences(all), Behavior, Animal, QH301-705.5, Biochemistry, Genetics and Molecular Biology(all), 31 Biological sciences, Genes, Insect, 06 Biological Sciences, Aggression, Mutagenesis, Insertional, Drosophila melanogaster, DNA Transposable Elements, Animals, Biology (General), Developmental Biology, Research Article
Agricultural and Biological Sciences(all), Behavior, Animal, QH301-705.5, Biochemistry, Genetics and Molecular Biology(all), 31 Biological sciences, Genes, Insect, 06 Biological Sciences, Aggression, Mutagenesis, Insertional, Drosophila melanogaster, DNA Transposable Elements, Animals, Biology (General), Developmental Biology, Research Article
182 Research products, page 1 of 19
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).88 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
