Sphingosine Interaction with Acidic Leucine-rich Nuclear Phosphoprotein-32A (ANP32A) Regulates PP2A Activity and Cyclooxygenase (COX)-2 Expression in Human Endothelial Cells
Sphingosine Interaction with Acidic Leucine-rich Nuclear Phosphoprotein-32A (ANP32A) Regulates PP2A Activity and Cyclooxygenase (COX)-2 Expression in Human Endothelial Cells
Sphingolipid metabolites regulate cell fate by acting on specific cellular targets. Although the influence of sphingolipids in cellular signaling has been well recognized, the exact molecular targets and how these targets influence cellular signaling mechanisms remain poorly understood. Toward this goal, we used affinity chromatography coupled with proteomics technology and identified acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), an inhibitor of protein phosphatase 2A (PP2A) as a direct target of sphingosine, N,N'-dimethyl sphingosine (DMS) and phytosphingosine but not dihydrosphingosine or sphingosine 1-phosphate. Treatment of human umbilical vein endothelial cells (HUVEC) with DMS, which is not phosphorylated by sphingosine kinases, led to the activation of PP2A activity. Suppression of ANP32A with siRNA enhanced basal and DMS-activated PP2A activity suggesting that the sphingoid base binds to and relieves the inhibitory action of ANP32A on the PP2A complex. Indeed, DMS relieved the ANP32A-mediated inhibition of PP2A enzyme complex in vitro. Interestingly, DMS treatment induced the p38 stress-activated protein kinase (SAPK) and expression of cyclooxygenase (COX)-2 transcript and protein. Knockdown of ANP32A expression further induced p38 SAPK and COX-2. These data identify ANP32A as a novel molecular target of sphingoid bases that regulates cellular signaling events and inflammatory gene expression.
- Cornell University United States
- Queens College, CUNY United States
- Memorial Sloan Kettering Cancer Center United States
- King’s University United States
- City University of New York United States
MAP Kinase Kinase 4, Intracellular Signaling Peptides and Proteins, Endothelial Cells, Nuclear Proteins, RNA-Binding Proteins, Gene Expression Regulation, Enzymologic, Cell Line, Cyclooxygenase 2, Sphingosine, Humans, Protein Phosphatase 2, Enzyme Inhibitors, RNA, Small Interfering, Signal Transduction
MAP Kinase Kinase 4, Intracellular Signaling Peptides and Proteins, Endothelial Cells, Nuclear Proteins, RNA-Binding Proteins, Gene Expression Regulation, Enzymologic, Cell Line, Cyclooxygenase 2, Sphingosine, Humans, Protein Phosphatase 2, Enzyme Inhibitors, RNA, Small Interfering, Signal Transduction
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
