Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Drug and Alcohol Dep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Drug and Alcohol Dependence
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6

Authors: Kirsten M, Raehal; Cullen L, Schmid; Ivan O, Medvedev; Raul R, Gainetdinov; Richard T, Premont; Laura M, Bohn;

Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6

Abstract

G protein-coupled receptor kinases (GRKs) are a family of intracellular proteins that desensitize and regulate the responsiveness of G protein-coupled receptors (GPCRs). In the present study, we assessed the contribution of GRK6 to the regulation and responsiveness of the G protein-coupled mu-opioid receptor (microOR) in response to morphine in vitro and in vivo using mice lacking GRK6. In cell culture, overexpression of GRK6 facilitates morphine-induced beta-arrestin2 (betaarrestin2) recruitment and receptor internalization, suggesting that this kinase may play a role in regulating the microOR. In vivo, we find that acute morphine treatment induces greater locomotor activation but less constipation in GRK6 knockout (GRK6-KO) mice compared to their wild-type (WT) littermates. The GRK6-KO mice also appear to be "presensitized" to the locomotor stimulating effects induced by chronic morphine treatment, yet these animals do not display more conditioned place preference than WT mice do. Furthermore, several other morphine-mediated responses which were evaluated, including thermal antinociception, analgesic tolerance, and physical dependence, were not affected by ablation of the GRK6 gene. Collectively, these results suggest that GRK6 may play a role in regulating some, but not all morphine-mediated responses. In addition, these findings underscore that the contribution of a particular regulatory factor to receptor function can differ based upon the specific cell composition and physiology assessed, and illustrate the need for using caution when interpreting the importance of interactions observed in cell culture.

Keywords

Male, Mice, Knockout, Morphine, Substance-Related Disorders, Receptors, Opioid, mu, Drug Tolerance, Motor Activity, G-Protein-Coupled Receptor Kinases, Substance Withdrawal Syndrome, Analgesics, Opioid, Gastrointestinal Tract, Mice, Inbred C57BL, Mice, Conditioning, Psychological, Animals, Cells, Cultured, Pain Measurement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze