Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

PLC/CAMK IV–NF-κB involved in the receptor for advanced glycation end products mediated signaling pathway in human endothelial cells

Authors: Jie, You; Wei, Peng; Xu, Lin; Qing-Ling, Huang; Jian-Yin, Lin;

PLC/CAMK IV–NF-κB involved in the receptor for advanced glycation end products mediated signaling pathway in human endothelial cells

Abstract

Advanced glycation end products (AGEs) and their interaction with the receptor for advanced glycation end products (RAGE) play an important role in diabetic vascular complications. The current study demonstrated that AGEs significantly increased RAGE expression and the release of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) in human umbilical vein endothelial cell-derived line ECV304 cells. RAGE antisense RNA partially inhibited the expression of TNF-alpha and IL-6 induced by AGEs. Oligonucleotide microarray was used to identify the genes that respond to RAGE activation. Phospholipase C beta 1 (PLC beta 1), phospholipase C beta 4 (PLC beta 4) and calcium/calmodulin-dependent protein kinase IV (CAMK IV) which associated with Ca(2+) signaling were upregulated. The rise of intracellular calcium and the NF-kappaB promoter activity induced by AGEs were suppressed by RAGE antisense RNA, PLC inhibitor U73122 and dominant negative CAMK IV, respectively. These findings suggest that PLC/CAMK IV-NF-kappaB is involved in RAGE mediated signaling pathway in human endothelial cells.

Related Organizations
Keywords

Glycation End Products, Advanced, Cell Survival, Interleukin-6, Reverse Transcriptase Polymerase Chain Reaction, Tumor Necrosis Factor-alpha, Receptor for Advanced Glycation End Products, Intracellular Space, NF-kappa B, Endothelial Cells, Cell Line, Gene Expression Regulation, Type C Phospholipases, Humans, Calcium, RNA, Antisense, Enzyme Inhibitors, Receptors, Immunologic, Calcium-Calmodulin-Dependent Protein Kinase Type 4, Genes, Dominant, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Average