Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Genetics
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2014
versions View all 2 versions

An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia

Authors: Birgit Knoechel; Justine E Roderick; Kaylyn E Williamson; Jiang Zhu; Jens G Lohr; Matthew J Cotton; Shawn M Gillespie; +20 Authors

An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia

Abstract

The identification of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL) led to clinical testing of γ-secretase inhibitors (GSIs) that prevent NOTCH1 activation. However, responses to these inhibitors have been transient, suggesting that resistance limits their clinical efficacy. Here we modeled T-ALL resistance, identifying GSI-tolerant 'persister' cells that expand in the absence of NOTCH1 signaling. Rare persisters are already present in naive T-ALL populations, and the reversibility of their phenotype suggests an epigenetic mechanism. Relative to GSI-sensitive cells, persister cells activate distinct signaling and transcriptional programs and exhibit chromatin compaction. A knockdown screen identified chromatin regulators essential for persister viability, including BRD4. BRD4 binds enhancers near critical T-ALL genes, including MYC and BCL2. The BRD4 inhibitor JQ1 downregulates expression of these targets and induces growth arrest and apoptosis in persister cells, at doses well tolerated by GSI-sensitive cells. Consistently, the GSI-JQ1 combination was found to be effective against primary human leukemias in vivo. Our findings establish a role for epigenetic heterogeneity in leukemia resistance that may be addressed by incorporating epigenetic modulators in combination therapy.

Keywords

570, Chromatin Immunoprecipitation, Indoles, 610, Cell Cycle Proteins, Enzyme-Linked Immunosorbent Assay, Precursor T-Cell Lymphoblastic Leukemia-Lymphoma, Real-Time Polymerase Chain Reaction, Epigenesis, Genetic, Histones, Mice, Cell Line, Tumor, Medicine and Health Sciences, Animals, Humans, Enzyme Inhibitors, Life Sciences, Nuclear Proteins, Azepines, Flow Cytometry, Chromatin, Gene Expression Regulation, Neoplastic, Drug Resistance, Neoplasm, Amyloid Precursor Protein Secretases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    337
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
337
Top 1%
Top 1%
Top 0.1%
bronze