Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of Flightless-I as a Substrate of the Cytokine-independent Survival Kinase CISK

Authors: Jun, Xu; Lan, Liao; Jun, Qin; Jianming, Xu; Dan, Liu; Zhou, Songyang;

Identification of Flightless-I as a Substrate of the Cytokine-independent Survival Kinase CISK

Abstract

Phosphatidylinositol (PI) 3-kinase mediates multiple pathways that regulate many aspects of the cell including metabolism, survival, migration, and proliferation. Both Akt and cytokine-independent survival kinase (CISK)/SGK3 are known AGC family protein kinases that function downstream of PI 3-kinase. Although the Akt signaling pathway has been studied extensively, the specific signaling cascades that are modulated by CISK remain to be elucidated. To understand CISK function, we affinity-purified the CISK protein complex and identified Flightless-I (FLII) as a novel downstream target of CISK. Here we show that FLII is an in vivo substrate of CISK that functions downstream of PI 3-kinase. CISK can associate with FLII and phosphorylate FLII at residues Ser(436) and Thr(818). FLII has been shown to act as a co-activator for nuclear hormone receptors such as estrogen receptor (ER). We demonstrate here that CISK can enhance ER transcription, which is dependent on its kinase activity, and mutation of CISK phosphorylation sites on FLII attenuates its activity as an ER co-activator. Furthermore, FLII knockdown by RNA interference renders 32D cells more sensitive to interleukin-3 withdrawal-induced apoptosis, suggesting that FLII itself is also a survival factor. These findings support the model that CISK phosphorylates FLII and activates nuclear receptor transcription and suggest a new cell survival signaling pathway mediated by PI 3-kinase and CISK.

Related Organizations
Keywords

Transcription, Genetic, Cell Survival, Microfilament Proteins, Receptors, Cytoplasmic and Nuclear, Protein Serine-Threonine Kinases, Cell Line, Substrate Specificity, Cytoskeletal Proteins, Mice, Phosphoserine, Phosphothreonine, Receptors, Estrogen, Trans-Activators, Animals, Humans, Interleukin-3, Phosphorylation, Carrier Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
gold