Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan.

Authors: T M, Rogalski; B D, Williams; G P, Mullen; D G, Moerman;

Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan.

Abstract

Mutations in the unc-52 gene of Caenorhabditis elegans affect attachment of the myofilament lattice to the muscle cell membrane. Here, we demonstrate that the unc-52 gene encodes a nematode homolog of perlecan, the mammalian basement membrane heparan sulfate proteoglycan. The longest potential open reading frame of this gene encodes a 2482-amino-acid protein with a signal peptide and four domains. The first domain is unique to the unc-52 polypeptide, whereas the three remaining domains contain sequences found in the LDL receptor (domain II) laminin (domain III) and N-CAM (domain IV). We have identified three alternatively spliced transcripts that encode different carboxy-terminal sequences. The two larger transcripts encode proteins containing all or part of domain IV, whereas the smaller transcript encodes a shortened polypeptide that completely lacks domain IV. We have determined that the disorganized muscle phenotype observed in unc-52(st196) animals is caused by the insertion of a Tc1 transposon into domain IV. Two monoclonal antibodies that recognize an extracellular component of all contractile tissues in C. elegans fail to stain embryos homozygous for a lethal unc-52 allele. We have mapped the epitopes recognized by both monoclonal antibodies to a region of domain IV in the unc-52-encoded protein sequence.

Keywords

Cell Adhesion Molecules, Neuronal, Molecular Sequence Data, Immunoglobulins, Membrane Proteins, Muscle Proteins, Helminth Proteins, Basement Membrane, Actin Cytoskeleton, DNA Transposable Elements, Animals, Amino Acid Sequence, Heparitin Sulfate, Laminin, Cloning, Molecular, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Conserved Sequence, Genes, Helminth, Heparan Sulfate Proteoglycans, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    240
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
240
Top 10%
Top 1%
Top 1%
Published in a Diamond OA journal