Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomoleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomolecules
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2020
Data sources: Lirias
versions View all 5 versions

Metabolic Diversity and Therapeutic Potential of Holarrhena pubescens: An Important Ethnomedicinal Plant

Authors: Zahara, Kulsoom; Panda, Sujogya Kumar; Swain, Shasank Sekhar; Luyten, Walter;

Metabolic Diversity and Therapeutic Potential of Holarrhena pubescens: An Important Ethnomedicinal Plant

Abstract

Holarrhena pubescens is an important medicinal plant of the Apocynaceae family that is widely distributed over the Indian subcontinent. The plant is extensively used in Ayurveda and other traditional medicinal systems without obvious adverse effects. Beside notable progress in the biological and phytochemical evaluation of this plant over the past few years, comprehensive reviews of H. pubescens are limited in scope. It has economic importance due to the extensive use of seeds as an antidiabetic. Furthermore, the plant is extensively reported in traditional uses among the natives of Asia and Africa, while scientifical validation for various ailments has not been studied either in vitro or in vivo. This review aims to summarize information on the pharmacology, traditional uses, active constituents, safety and toxicity of H. pubescens. Chemical analysis of H. pubescens extracts revealed the presence of several bioactive compounds, such as conessine, isoconnessine, conessimine, conimine, conessidine, conkurchicine, holarrhimine, conarrhimine, mokluangin A-D and antidysentericine. Overall, this review covers the ethnopharmacology, phytochemical composition, and pharmacological potential of H. pubescens, with a critical discussion of its toxicity, biological activities (in vitro and in vivo), the mechanism of action, as well as suggestions for further basic and clinical research.

Keywords

Biochemistry & Molecular Biology, 3101 Biochemistry and cell biology, MEDICO-BOTANICAL KNOWLEDGE, Gastrointestinal Diseases, Review, STEROIDAL ALKALOIDS, 0601 Biochemistry and Cell Biology, Microbiology, <i>Holarrhena pubescens</i>, ETHNOPHARMACOLOGICAL SURVEY, Diabetes Mellitus, Humans, HEALTH-CARE PRACTICES, ethnopharmacology, phytoconstituents, Holarrhena, Science & Technology, Plants, Medicinal, Holarrhena pubescens, Plant Extracts, toxicity, Biodiversity, QR1-502, Medicine, Ayurvedic, UTTARA-KANNADA DISTRICT, bioactivity, ETHNOBOTANICAL SURVEY, TRADITIONAL HEALERS, SHIMOGA DISTRICT, MAYURBHANJ DISTRICT, 3102 Bioinformatics and computational biology, 3206 Medical biotechnology, Medicine, Traditional, Life Sciences & Biomedicine, pharmacokinetics, ANTIDYSENTERICA EXTRACT, Phytotherapy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
gold