Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Crystallographi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Crystallographica Section F Structural Biology Communications
Article . 2013 . Peer-reviewed
License: IUCr Copyright and Licensing Policy
Data sources: Crossref
versions View all 2 versions

Crystallization and structure determination of a symmetrical `football' complex of the mammalian mitochondrial Hsp60–Hsp10 chaperonins

Authors: Shahar, Nisemblat; Avital, Parnas; Oren, Yaniv; Abdussalam, Azem; Felix, Frolow;

Crystallization and structure determination of a symmetrical `football' complex of the mammalian mitochondrial Hsp60–Hsp10 chaperonins

Abstract

The mitochondrial Hsp60-Hsp10 complex assists the folding of various proteins impelled by ATP hydrolysis, similar to the bacterial chaperonins GroEL and GroES. The near-atomic structural details of the mitochondrial chaperonins are not known, despite the fact that almost two decades have passed since the structures of the bacterial chaperonins became available. Here, the crystallization procedure, diffraction experiments and structure determination by molecular replacement of the mammalian mitochondrial chaperonin HSP60 (E321K mutant) and its co-chaperonin Hsp10 are reported.

Related Organizations
Keywords

Mammals, Chaperonin 10, Animals, Humans, Chaperonin 60, Crystallization, Crystallography, X-Ray, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Average
Top 10%
bronze