Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/s0076-...
Part of book or chapter of book . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Mass Spectrometric Identification and Characterization of RNA‐Modifying Enzymes

Authors: Tsutomu, Suzuki; Yoshiho, Ikeuchi; Akiko, Noma; Takeo, Suzuki; Yuriko, Sakaguchi;

Mass Spectrometric Identification and Characterization of RNA‐Modifying Enzymes

Abstract

Posttranscriptional modifications are characteristic structural features of RNA molecules. To study the functional roles played by RNA modifications, it is necessary to identify the genes and enzymes that are responsible for their biosynthesis. Many uncharacterized genes for RNA modifications still remain buried in the genomes of model organisms. We describe here a systematic genomewide screening method that uses a reverse genetic approach combined with mass spectrometry, which we have named "ribonucleome analysis," to identify uncharacterized genes that are involved in generating RNA modifications.

Related Organizations
Keywords

Base Sequence, Molecular Sequence Data, Escherichia coli, RNA, Saccharomyces cerevisiae, Mass Spectrometry, Enzymes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 10%