Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plant-Micr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant-Microbe Interactions
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant-Microbe Interactions
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

EMSY-Like Genes Are Required for Full RPP7-Mediated Race-Specific Immunity and Basal Defense in Arabidopsis

Authors: Tokuji Tsuchiya; Thomas Eulgem;

EMSY-Like Genes Are Required for Full RPP7-Mediated Race-Specific Immunity and Basal Defense in Arabidopsis

Abstract

The Arabidopsis thaliana gene enhanced downy mildew 2 (EDM2) encodes a nuclear protein required for RPP7-mediated race-specific disease resistance against Hyaloperonospora arabidopsidis, proper floral transition and additional developmental processes. Transcript levels of the disease-resistance gene RPP7 are enhanced by EDM2 while those of the floral suppressor FLC are repressed by EDM2. By yeast two-hybrid screening for EDM2-interacting proteins, we identified AtEML1, a member of a small group of four Arabidopsis proteins containing an EMSY N-terminal domain, a central Agenet domain, and a C-terminal coiled-coil motif. Using T-DNA mutants combined with silencing by artificial microRNAs, we found AtEML1, AtEML2, and, likely, AtEML4 to contribute to RPP7-mediated immunity. Besides this, AtEML1 and AtEML2 participate in a second EDM2-dependent function and affect floral transition. Unlike EDM2, whose role in immunity appears to be limited to RPP7-mediated disease resistance, some AtEML members contribute to basal defense, an unspecific general defense mechanism. Domain architectures of EDM2 as well as AtEML proteins suggest roles of these proteins in the regulation of chromatin states. Thus, possible cooperation of AtEML members with EDM2 at the level of chromatin dynamics may link race-specific pathogen recognition to general defense mechanisms.

Related Organizations
Keywords

Peronospora, Arabidopsis Proteins, Botany, Arabidopsis, Flowers, Plants, Genetically Modified, Microbiology, QR1-502, Mutagenesis, Insertional, Species Specificity, Gene Expression Regulation, Plant, Seedlings, QK1-989, Two-Hybrid System Techniques, Protein Interaction Mapping, Plant Immunity, Plant Diseases, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
gold