Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Current Genetics
Article . 2005
versions View all 2 versions

A two-step strategy for detecting differential gene expression in cDNA microarray data

Authors: Yan, Lu; Jun, Zhu; Pengyuan, Liu;

A two-step strategy for detecting differential gene expression in cDNA microarray data

Abstract

A mixed-model approach is proposed for identifying differential gene expression in cDNA microarray experiments. This approach is implemented by two interconnected steps. In the first step, we choose a subset of genes that are potentially expressed differentially among treatments with a loose criterion. In the second step, these potential genes are used for further analyses and data-mining with a stringent criterion, in which differentially expressed genes (DEGs) are confirmed and some quantities of interest (such as gene x treatment interaction) are estimated. By simulating datasets with DEGs, we compare our statistical method with a widely used method, the t-statistic, for single genes. Simulation results show that our approach produces a high power and a low false discovery rate for DEG identification. We also investigate the impacts of various source variations resulting from microarray experiments on the efficiency of DEG identification. Analysis of a published experiment studying unstable transcripts in Arabidopsis illustrates the utility of our method. Our method identifies more novel and biologically interesting unstable transcripts than those reported in the original literature.

Related Organizations
Keywords

DNA, Complementary, Models, Genetic, Arabidopsis, Gene Expression, Genes, Plant, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average