Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1997 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Functional Analysis of the Nuclear LIM Domain Interactor NLI

Authors: Linda W. Jurata; Gordon N. Gill;

Functional Analysis of the Nuclear LIM Domain Interactor NLI

Abstract

LIM homeodomain and LIM-only (LMO) transcription factors contain two tandemly arranged Zn2+-binding LIM domains capable of mediating protein-protein interactions. These factors have restricted patterns of expression, are found in invertebrates as well as vertebrates, and are required for cell type specification in a variety of developing tissues. A recently identified, widely expressed protein, NLI, binds with high affinity to the LIM domains of LIM homeodomain and LMO proteins in vitro and in vivo. In this study, a 38-amino-acid fragment of NLI was found to be sufficient for the association of NLI with nuclear LIM domains. In addition, NLI was shown to form high affinity homodimers through the amino-terminal 200 amino acids, but dimerization of NLI was not required for association with the LIM homeodomain protein Lmxl. Chemical cross-linking analysis revealed higher-order complexes containing multiple NLI molecules bound to Lmx1, indicating that dimerization of NLI does not interfere with LIM domain interactions. Additionally, NLI formed complexes with Lmx1 on the rat insulin I promoter and inhibited the LIM domain-dependent synergistic transcriptional activation by Lmx1 and the basic helix-loop-helix protein E47 from the rat insulin I minienhancer. These studies indicate that NLI contains at least two functionally independent domains and may serve as a negative regulator of synergistic transcriptional responses which require direct interaction via LIM domains. Thus, NLI may regulate the transcriptional activity of LIM homeodomain proteins by determining specific partner interactions.

Keywords

Homeodomain Proteins, Recombinant Fusion Proteins, Helix-Loop-Helix Motifs, LIM-Homeodomain Proteins, Molecular Sequence Data, Nerve Tissue Proteins, DNA, LIM Domain Proteins, Rats, DNA-Binding Proteins, Enhancer Elements, Genetic, Animals, Humans, Insulin, Amino Acid Sequence, Promoter Regions, Genetic, TCF Transcription Factors, Dimerization, Cell Line, Transformed, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    161
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
161
Top 10%
Top 1%
Top 1%
bronze