Loss of tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila
Loss of tau results in defects in photoreceptor development and progressive neuronal degeneration in Drosophila
ABSTRACTAccumulations of Tau, a microtubule‐associated protein (MAP), into neurofibrillary tangles is a hallmark of Alzheimer's disease and other tauopathies. However, the mechanisms leading to this pathology are still unclear: the aggregates themselves could be toxic or the sequestration of Tau into tangles might prevent Tau from fulfilling its normal functions, thereby inducing a loss of function defect. Surprisingly, the consequences of losing normal Tau expression in vivo are still not well understood, in part due to the fact that Tau knockout mice show only subtle phenotypes, presumably due to the fact that mammals express several MAPs with partially overlapping functions. In contrast, flies express fewer MAP, with Tau being the only member of the Tau/MAP2/MAP4 family. Therefore, we used Drosophila to address the physiological consequences caused by the loss of Tau. Reducing the levels of fly Tau (dTau) ubiquitously resulted in developmental lethality, whereas deleting Tau specifically in neurons or the eye caused progressive neurodegeneration. Similarly, chromosomal mutations affecting dTau also caused progressive degeneration in both the eye and brain. Although photoreceptor cells initially developed normally in dTau knockdown animals, they subsequently degenerated during late pupal stages whereas weaker dTau alleles caused an age‐dependent defect in rhabdomere structure. Expression of wild type human Tau partially rescued the neurodegenerative phenotype caused by the loss of endogenous dTau, suggesting that the functions of Tau proteins are functionally conserved from flies to humans. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1210–1225, 2014
- Oregon Health & Science University United States
Retinal Degeneration, Brain, tau Proteins, Microtubules, Axons, Animals, Genetically Modified, Alternative Splicing, Gene Knockdown Techniques, Mutation, Nerve Degeneration, Animals, Drosophila Proteins, Humans, Protein Isoforms, Drosophila, Photoreceptor Cells, Invertebrate
Retinal Degeneration, Brain, tau Proteins, Microtubules, Axons, Animals, Genetically Modified, Alternative Splicing, Gene Knockdown Techniques, Mutation, Nerve Degeneration, Animals, Drosophila Proteins, Humans, Protein Isoforms, Drosophila, Photoreceptor Cells, Invertebrate
30 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
