Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pure Utrecht University
Conference object . 2002
versions View all 4 versions

A Ubiquitin-interacting Motif (UIM) Is Essential for Eps15 and Eps15R Ubiquitination

Authors: Klapisz, E.E.; Sorokina, I.; Lemeer, S.; Pijnenburg, M.; Verkleij, A.J.; van Bergen en Henegouwen, P.M.P.;

A Ubiquitin-interacting Motif (UIM) Is Essential for Eps15 and Eps15R Ubiquitination

Abstract

An important negative control mechanism in the signaling of epidermal growth factor (EGF) is the endocytosis and subsequent degradation of activated EGF receptors. Eps15 and its related partner Eps15R play a key role in clathrin-mediated endocytosis of transmembrane receptors. Upon EGF stimulation of the cell, Eps15 becomes both phosphorylated on tyrosine residues and monoubiquitinated. Although tyrosine phosphorylation of Eps15 has been implicated in EGF receptor internalization, the function of Eps15 ubiquitination is not known. Using a mutational approach, we have found that the second ubiquitin-interacting motif (UIM) of Eps15 and Eps15R is essential for their ubiquitination. This UIM partially overlaps with the recently characterized nuclear export signal in Eps15. We show that these two overlapping motifs have different structural requirements with respect to nuclear export signal versus ubiquitination signal activity. Our data demonstrate that the UIM does not contain the ubiquitin acceptor site but functions as a recruitment site for the ubiquitination machinery leading to the monoubiquitination of both Eps15 and Eps15R.

Related Organizations
Keywords

Cell biology, Binding Sites, Molecular biology, Ubiquitin, Amino Acid Motifs, Calcium-Binding Proteins, Molecular Sequence Data, Active Transport, Cell Nucleus, Intracellular Signaling Peptides and Proteins, Phosphoproteins, Life sciences, Endocytosis, Cell Line, Animals, Humans, Amino Acid Sequence, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 1%
gold