Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Neuro-Psychopharmacology and Biological Psychiatry
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABAA receptor

Authors: Glòria Salort; Jesús A. García-Sevilla; María Álvaro-Bartolomé;

Ketamine-induced hypnosis and neuroplasticity in mice is associated with disrupted p-MEK/p-ERK sequential activation and sustained upregulation of survival p-FADD in brain cortex: Involvement of GABAA receptor

Abstract

Ketamine (KET) is an antidepressant and hypnotic drug acting as an antagonist at excitatory NMDA glutamate receptors. The working hypothesis postulated that KET-induced sleep in mice results in dysregulation of mitogen-activated protein kinases (MAPK) MEK-ERK sequential phosphorylation and upregulation of survival p-FADD and other neuroplastic markers in brain. Low (5-15 mg/kg) and high (150 mg/kg) doses of KET on target proteins were assessed by Western immunoblot in mouse brain cortex. During the time course of KET (150 mg/kg)-induced sleep (up to 50 min) p-MEK was increased (up to +79%) and p-ERK decreased (up to -46%) indicating disruption of MEK to ERK signal. Subhypnotic KET (5-15 mg/kg) also revealed uncoupling of p-MEK (+13-81%) to p-ERK (unchanged content). KET did not alter contraregulatory MAPK mechanisms such as inactivated p-MEK1 (ERK dampening) and phosphatases MKP1/2/3 (ERK dephosphorylation). As other relevant findings, KET (5, 15 and 150 mg/kg) upregulated p-FADD in a dose-dependent manner, and for the hypnotic dose the effect paralleled the time course of sleep which resulted in increased p-FADD/FADD ratios. KET (150 mg/kg) also increased NF-κΒ and PSD-95 neuroplastic markers. Flumazenil (a neutral allosteric antagonist at GABAA receptor) prolonged KET sleep and blocked p-MEK upregulation, indicating the involvement of this receptor as a negative modulator. SL-327 (a MEK inhibitor) augmented KET sleep, further indicating the relevance of reduced p-ERK1/2 in KET-induced hypnosis. These findings suggest that hypnotic and subhypnotic doses of KET inducing uncoupling of p-MEK to p-ERK signal and regulation of p-ERK (downregulation) and p-FADD (upregulation) may participate in the expression of some of its adverse effects (e.g. amnesia, dissociative effects).

Keywords

Cerebral Cortex, Flumazenil, Male, Analgesics, Neuronal Plasticity, Time Factors, Dose-Response Relationship, Drug, MAP Kinase Signaling System, Fas-Associated Death Domain Protein, Immobility Response, Tonic, Nerve Tissue Proteins, Receptors, GABA-A, Mice, Reflex, Righting, Animals, Ketamine, Enzyme Inhibitors, GABA Modulators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%