Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts
Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore–microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore–microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial–mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.
- University of Palermo Italy
- National Research Council Italy
- FONDAZIONE RI.MED Italy
- University of Palermo Argentina
- Ri.MED Italy
CENP‐E, Chromosomal Proteins, Non-Histone, Centromere, Mitosis, Cancer progression, Fibroblasts, Aneuploidy, cancer progression, Article, Settore BIO/18 - Genetica, expression profiling, centromere, Humans, CENP-E, Gene Regulatory Networks, aneuploidy, RNA, Small Interfering, Transcriptome, Kinetochores, Expression profiling
CENP‐E, Chromosomal Proteins, Non-Histone, Centromere, Mitosis, Cancer progression, Fibroblasts, Aneuploidy, cancer progression, Article, Settore BIO/18 - Genetica, expression profiling, centromere, Humans, CENP-E, Gene Regulatory Networks, aneuploidy, RNA, Small Interfering, Transcriptome, Kinetochores, Expression profiling
1 Research products, page 1 of 1
- 2016IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
