Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aging Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aging Cell
Article . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions

Plasma proteomic profile of age, health span, and all‐cause mortality in older adults

Authors: Sanish Sathyan; Emmeline Ayers; Tina Gao; Erica F. Weiss; Sofiya Milman; Joe Verghese; Nir Barzilai;

Plasma proteomic profile of age, health span, and all‐cause mortality in older adults

Abstract

AbstractAging is a complex trait characterized by a diverse spectrum of endophenotypes. By utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity cohort (age range: 65–95, 55.7% females), we found that 754 of 4,265 proteins were associated with chronological age. Pleiotrophin (PTN; β[SE] = 0.0262 [0.0012]; p = 3.21 × 10−86), WNT1‐inducible‐signaling pathway protein 2 (WISP‐2; β[SE] = 0.0189 [0.0009]; p = 4.60 × 10−82), chordin‐like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; p = 1.45 × 10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and R‐spondin‐1(RSPO1; β[SE] = 0.0208 [0.0011]; p = 1.09 × 10−70), were the proteins most significantly associated with age. Weighted gene co‐expression network analysis identified two of nine modules (clusters of highly correlated proteins) to be significantly associated with chronological age and demonstrated that the biology of aging overlapped with complex age‐associated diseases and other age‐related traits. The correlation between proteomic age prediction based on elastic net regression and chronological age was 0.8 (p < 2.2E−16). Pathway analysis showed that inflammatory response, organismal injury and abnormalities, cell and organismal survival, and death pathways were associated with aging. The present study made novel associations between a number of proteins and aging, constructed a proteomic age model that predicted mortality, and suggested possible proteomic signatures possessed by a cohort enriched for familial exceptional longevity.

Keywords

Male, Proteomics, Aging, Plasma, Humans, Female, Original Articles, Mortality, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 1%
Top 10%
Top 1%
Green
gold