Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Mathematics
Article . 2004 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions

Smoothness of Quotients Associated With a Pair of Commuting Involutions

Smoothness of quotients associated with a pair of commuting convolutions.
Authors: Helminck, Aloysius G.; Schwarz, Gerald W.;

Smoothness of Quotients Associated With a Pair of Commuting Involutions

Abstract

AbstractLet σ, θ be commuting involutions of the connected semisimple algebraic group G where σ, θ and G are defined over an algebraically closed field , char = 0. Let H := Gσ and K := Gθ be the fixed point groups. We have an action (H × K) × G → G, where ((h, k), g) ⟼ hgk–1, h ∈ H, k ∈ K, g ∈ G. Let G//(H × K) denote the categorical quotient Spec (G)H×K. We determine when this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72] and Richardson [Ric82] in the symmetric case where σ = θ and H = K.

Keywords

Semisimple Lie groups and their representations, connected reductive algebraic groups, Group actions on varieties or schemes (quotients), Linear algebraic groups over the reals, the complexes, the quaternions, categorical quotients, Grassmannians, Schubert varieties, flag manifolds, Linear algebraic groups over arbitrary fields, commuting involutions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities