Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oncogenearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer

Authors: Y, Kim; J, Kim; S-W, Jang; J, Ko;

The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer

Abstract

Androgen and the androgen receptor (AR) have important roles in prostate cancer (PCa) development, and androgen ablation has been the main therapeutic option for the treatment of PCa. However, the transition mechanism from androgen-dependent to -independent PCa after androgen depletion remains unclear. We investigated the distinct roles of small leucine zipper protein (sLZIP) in proliferation of androgen-dependent and -independent PCa cells. Cyclin D3 is known to interact with AR and attenuates the ligand-dependent function of AR in PCa cells. sLZIP regulates the transcription of cyclin D3 by binding directly to the AP-1 region in the cyclin D3 promoter. sLZIP represses AR transcriptional activity by interaction with AR that is phosphorylated by cyclin D3/cyclin-dependent kinase11(p58), leading to the suppression of androgen-dependent proliferation of PCa cells. The expression level of sLZIP is elevated in androgen-independent PCa cells and advanced human prostate tumors. Knockdown of endogenous sLZIP suppresses proliferation of androgen-independent PCa cells. LNCaP cells transformed to androgen-independent PCa cells exhibit increased expressions of sLZIP and cyclin D3. Tumor formation is inhibited in nude mouse xenografts from two androgen-independent PCa cells that are stably transfected with sh-sLZIP. Our findings indicate that sLZIP negatively regulates AR transactivation in androgen-dependent PCa cells and functions as a positive regulator in tumor progression of androgen-independent PCa. sLZIP contributes to the malignant phenotype of PCa and constitutes a novel therapeutic target for human PCa.

Related Organizations
Keywords

Male, Transcriptional Activation, Mice, Inbred BALB C, Neoplasms, Hormone-Dependent, Prostatic Neoplasms, Transfection, Gene Expression Regulation, Neoplastic, Mice, Receptors, Androgen, Cell Line, Tumor, Androgens, Animals, Heterografts, Humans, Cyclin D3, Cyclic AMP Response Element-Binding Protein, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Average