Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2020.0...
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://addi.ehu.es/bitstream/...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The FASEB Journal
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 9 versions

CHO/LY-B cell growth under limiting sphingolipid supply: correlation between lipid composition and biophysical properties of sphingolipid-restricted cell membranes+

Authors: Bingen G. Monasterio; Noemi Jiménez-Rojo; Aritz B. García-Arribas; Howard Riezman; Félix M. Goñi; Alicia Alonso;

CHO/LY-B cell growth under limiting sphingolipid supply: correlation between lipid composition and biophysical properties of sphingolipid-restricted cell membranes+

Abstract

ABSTRACTSphingolipids (SL) are ubiquitous in mammalian cell membranes, yet there is little data on the behavior of cells under SL-restriction conditions. LY-B cells derive from a CHO line in which serine palmitoyl transferase (SPT), thusde novoSL synthesis, is suppressed, while maintaining the capacity of taking up and metabolizing exogenous sphingoid bases from the culture medium. In the present study LY-B cells were adapted to grow in a fetal bovine serum (FBS)-deficient medium to avoid external uptake of lipids. The lowest FBS concentration that allowed LY-B cell growth, though at a slow rate, under our conditions was 0.04%, i.e. 250-fold less than the standard (10%) concentration. Cells grown under limiting SL concentrations remained viable for at least 72 h. Enriching with sphingomyelin the SL-deficient medium allowed the recovery of control LY-B cell growth rates. Studies including whole cells, plasma membrane preparations, and derived lipid vesicles were carried out. Laurdan fluorescence was recorded to measure membrane molecular order, showing a significant decrease in the rigidity of LY-B cells, not only in plasma membrane but also in whole cell lipid extract, as a result of SL limitation in the growth medium. Plasma membrane preparations and whole cell lipid extracts were also studied using atomic force microscopy in the force spectroscopy mode. Force measurements demonstrated that lower breakthrough forces were required to penetrate samples obtained from SL-poor LY-B cells than those obtained from control cells. Mass-spectroscopic analysis was also a helpful tool to understand the rearrangement undergone by the LY-B cell lipid metabolism. The most abundant SL in LY-B cells, sphingomyelin, decreased by about 85% as a result of SL limitation in the medium, the bioactive lipid ceramide and the ganglioside precursor hexosylceramide decreased similarly, together with cholesterol. Quantitative SL analysis showed that a 250-fold reduction in sphingolipid supply to LY-B cells led to a 6-fold decrease in membrane sphingolipids, underlining the resistance to changes in composition of these cells. Plasma membrane compositions exhibited similar changes, at least qualitatively, as the whole cells with SL restriction. A linear correlation was observed between the sphingomyelin concentration in the membranes, the degree of lipid order as measured by laurdan fluorescence, and membrane breakthrough forces assessed by atomic force microscopy. Concomitant changes were detected in glycerophospholipids under SL-restriction conditions.

Keywords

Laurdan, Sphingolipids, sphingolipids, CHO, membrane fluidity, Cell Membrane, CHO Cells, Glycerophospholipids, plasma membrane, sphingomyelin, Membrane Lipids, Cricetulus, mass- spectroscopy, Cricetinae, lipidomics, Animals, AFM, LY- B, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 79
  • 55
    views
    79
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
6
Top 10%
Average
Top 10%
55
79
Green
hybrid