Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology and Evolution
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Genomic Background Drives the Divergence of Duplicated Amylase Genes at Synonymous Sites in Drosophila

Authors: Hirohisa Kishino; Ze Zhang;

Genomic Background Drives the Divergence of Duplicated Amylase Genes at Synonymous Sites in Drosophila

Abstract

In some Drosophila species, there are two types of greatly diverged amylase (Amy) genes (Amy clusters 1 and 2), each encoding active amylase isozymes. Cluster 1 is located at the middle of its chromosomal arm, and the region has a normal local recombination rate. However, cluster 2 is near the centromere, and this region is known to have a reduced recombination rate. Although nonsynonymous substitutions follow a molecular clock, synonymous substitutions were accelerated in cluster 2 after gene duplications. This resulted in a higher GC content at the third codon position (GC3) and codon usage bias in cluster 1, and lower GC3 content and codon usage bias in the cluster 2. However, no systematic difference in GC content was observed in the first and second codon positions or the 3'-flanking regions. Therefore, differences in local recombination rate rather than mutation bias might explain the divergence at synonymous sites between the two Amy clusters within species (Hill-Robertson effect). Alternatively, the different patterns and levels of expression between the two clusters may imply that the reduced expression level in cluster 2 caused by chromatin potentiation decreased the codon bias. Both of these hypotheses imply the importance of the genomic background as a driving force of divergence between non-tandemly duplicated genes.

Related Organizations
Keywords

Recombination, Genetic, Base Composition, Genome, Gene Expression, Chromosomes, Evolution, Molecular, Isoenzymes, Gene Duplication, Amylases, Mutation, Animals, Drosophila Proteins, Drosophila, 3' Flanking Region, Codon, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
gold