Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

PHAPI/pp32 Suppresses Tumorigenesis by Stimulating Apoptosis

Authors: Wei, Pan; Li S, da Graca; Yufang, Shao; Qian, Yin; Hao, Wu; Xuejun, Jiang;

PHAPI/pp32 Suppresses Tumorigenesis by Stimulating Apoptosis

Abstract

PHAPI/pp32 is a tumor suppressor whose expression is altered in various human cancers. Although PHAPI possesses multiple biochemical activities, the molecular basis for its tumor-suppressive function has remained obscure. Recently we identified PHAPI as an apoptotic enhancer that stimulates apoptosome-mediated caspase activation. In this study, we defined the structural requirement for its activity to stimulate caspase activation using a series of truncation mutants of PHAPI. Further, utilizing these mutants, we provide evidence to support the model that the apoptotic activity of PHAPI is required for its tumor-suppressive capability. Consistently, pp32R1, a close homolog of PHAPI and yet an oncoprotein, is not able to stimulate caspase activation. A highly discrete region between these two proteins localizes to an essential caspase activation motif of PHAPI. Additionally, PHAPI is predominantly a nuclear protein, and it can translocate to the cytoplasm during apoptosis. Disruption of the nuclear localization signal of PHAPI caused a modest decrease of its tumor-suppressive function, indicating that nuclear localization of PHAPI contributes to, but is not essential for, tumor suppression.

Related Organizations
Keywords

Cell Nucleus, Tumor Suppressor Proteins, Amino Acid Motifs, Nuclear Localization Signals, Intracellular Signaling Peptides and Proteins, Apoptosis Inducing Factor, Nuclear Proteins, RNA-Binding Proteins, Apoptosis, Phosphoproteins, Enzyme Activation, Mice, Protein Transport, Cell Transformation, Neoplastic, Caspases, Mutation, Animals, Humans, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research