Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 2008
Data sources: MPG.PuRe
versions View all 3 versions

Structural Determinants for Ca2+ and Phosphatidylinositol 4,5-Bisphosphate Binding by the C2A Domain of Rabphilin-3A

Authors: Coudevylle, N.; Montaville, P.; Leonov, M.; Zweckstetter, M.; Becker, S.;

Structural Determinants for Ca2+ and Phosphatidylinositol 4,5-Bisphosphate Binding by the C2A Domain of Rabphilin-3A

Abstract

Rabphilin-3A is a neuronal C2 domain tandem containing protein involved in vesicle trafficking. Both its C2 domains (C2A and C2B) are able to bind phosphatidylinositol 4,5-bisphosphate, a key player in the neurotransmitter release process. The rabphilin-3A C2A domain has previously been shown to bind inositol-1,4,5-trisphosphate (IP3; phosphatidylinositol 4,5-bisphosphate headgroup) in a Ca2+-dependent manner with a relatively high affinity (50 microm) in the presence of saturating concentrations of Ca2+. Moreover, IP3 and Ca2+ binding to the C2A domain mutually enhance each other. Here we present the Ca2+-bound solution structure of the C2A domain. Structural comparison with the previously published Ca2+-free crystal structure revealed that Ca2+ binding induces a conformational change of Ca2+ binding loop 3 (CBL3). Our IP3 binding studies as well as our IP3-C2A docking model show the active involvement of CBL3 in IP3 binding, suggesting that the conformational change on CBL3 upon Ca2+ binding enables the interaction with IP3 and vice versa, in line with a target-activated messenger affinity mechanism. Our data provide detailed structural insight into the functional properties of the rabphilin-3A C2A domain and reveal for the first time the structural determinants of a target-activated messenger affinity mechanism.

Keywords

Models, Molecular, Phosphatidylinositol 4,5-Diphosphate, Vesicular Transport Proteins, Nerve Tissue Proteins, Crystallography, X-Ray, Rabphilin-3A, Protein Structure, Tertiary, Rats, Structure-Activity Relationship, Animals, Calcium, Adaptor Proteins, Signal Transducing, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Green
gold