Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Sciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Science
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Overexpression of AtCHX24, a member of the cation/H+ exchangers, accelerates leaf senescence in Arabidopsis thaliana

Authors: Yoonkang, Hur; Jin Hee, Kim; Dong-Joon, Lee; Kyung Min, Chung; Hye Ryun, Woo;

Overexpression of AtCHX24, a member of the cation/H+ exchangers, accelerates leaf senescence in Arabidopsis thaliana

Abstract

Leaf senescence, the final stage of leaf development, occurs in an age-dependent manner but can be finely regulated by other developmental and environmental factors. Despite the discovery of many genes involved in leaf senescence, the molecular genetic mechanisms of leaf senescence are still unclear. In this study, an activation-tagging based suppressor screen was performed to identify Arabidopsis genes that could suppress the delayed leaf senescence phenotypes of oresara9-1 (ore9-1) when overexpressed. The suppressor1 of ore9 dominant (sor1-D) was caused by the overexpression of AtCHX24, a putative cation/H(+) exchanger. The sor1-D mutation suppressed the phenotypes of ore9 in age-dependent and dark-induced senescence. Furthermore, the sor1-D mutation restored the delayed senescence phenotypes of ore1 and ore3. The sor1-D mutant also exhibited increased sensitivity to pH changes during dark-induced leaf senescence. Collectively, overexpression of AtCHX24 results in accelerated leaf senescence and these results suggest that AtCHX24 plays an important role in regulating leaf senescence.

Related Organizations
Keywords

DNA, Bacterial, Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Photoperiod, Arabidopsis, Gene Expression, Hydrogen-Ion Concentration, Plants, Genetically Modified, Antiporters, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, RNA, Plant, Mutation, Carrier Proteins, Genes, Suppressor, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average