Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Peptides
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Peptides
Article . 2002
versions View all 2 versions

Drosophila melanogaster myotropins have unique functions and signaling pathways

Authors: J, Merte; R, Nichols;

Drosophila melanogaster myotropins have unique functions and signaling pathways

Abstract

Drosophila melanogaster TDVDHVFLRFamide (DMS), SDNFMRFamide, and pEVRFRQCYFNPISCF (FLT) represent three structurally distinct peptide families. Each peptide decreases heart rate albeit with different magnitudes and time-dependent responses. DMS and FLT are expressed in the crop and decrease crop motility; however, SDNFMRFamide expression and effect on the crop has not been reported. These data suggest the peptides have different physiological roles. The peptides have non-overlapping expression patterns in neural tissue, which suggests different mechanisms regulate their synthesis and release. The structures, expression patterns, and activities of the myotropins suggest they have important but different roles in biology and different signaling pathways.

Related Organizations
Keywords

Drosophila melanogaster, Heart Rate, Larva, Neuropeptides, Animals, Drosophila Proteins, Nerve Tissue, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%