Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Disruption of the Gene Encoding the Acyl-CoA-binding Protein ( ) Perturbs Acyl-CoA Metabolism in

Authors: Schjerling, Charlotte Karlskov; Hummel, Rene; Krogh Hansen, Jan; Børsting, Claus; Møller Mikkelsen, Jan; Kristiansen, Karsten; Knudsen, Jens;

Disruption of the Gene Encoding the Acyl-CoA-binding Protein ( ) Perturbs Acyl-CoA Metabolism in

Abstract

The ACB1 gene encoding the acyl-CoA-binding protein (ACBP) was disrupted in Saccharomyces cerevisiae. The disruption did not affect the growth rate on glucose but reduced the growth rate on ethanol slightly. Although the growth rate of the acb1-disrupted cells was unaffected or only slightly affected, the acb1-disrupted strain was unable to compete with wild type cells when grown in mixed culture. The acyl-CoA level in the disrupted cells was increased from 1.5- to 2.5-fold during exponential growth. The increase in the acyl-CoA level was caused solely by an increase in de novo synthesized stearoyl-CoA. Experiments with purified yeast fatty acid synthetase show that it will synthesize long chain acyl-CoAs in the absence of acyl-CoA-binding protein. The addition of ACBP to the incubation medium resulted in a dramatic decrease in the chain length of the synthesized acyl-CoA esters. Despite the fact that the stearoyl-CoA concentration was increased 7-fold and the Delta9-desaturase mRNA level was increased 3-fold, the synthesis of oleic acid was unchanged in the acb1-disrupted strain. The results strongly indicate that ACBP in yeast is involved in the transport of newly synthesized acyl-CoA esters from the fatty acid synthetase to acyl-CoA-consuming processes.

Keywords

Diazepam Binding Inhibitor, Fatty Acid Desaturases, Ethanol, Acyl-CoA Dehydrogenase, Long-Chain, Saccharomyces cerevisiae, Blotting, Northern, Lipid Metabolism, Glucose, Acyl Coenzyme A, Fatty Acid Synthases, Carrier Proteins, Stearoyl-CoA Desaturase, Acetic Acid, Oleic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 10%
Top 10%
Top 10%
gold