Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Genetics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Genomics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

A large scale analysis of resistance gene homologues in Arachis

Authors: D J, Bertioli; S C M, Leal-Bertioli; M B, Lion; V L, Santos; G, Pappas; S B, Cannon; P M, Guimarães;

A large scale analysis of resistance gene homologues in Arachis

Abstract

Arachis hypogaea L., commonly known as the peanut or groundnut, is an important and widespread food legume. Because the crop has a narrow genetic base, genetic diversity in A. hypogaea is low and it lacks sources of resistance to many pests and diseases. In contrast, wild diploid Arachis species are genetically diverse and are rich sources of disease resistance genes. The majority of known plant disease resistance genes encode proteins with a nucleotide binding site domain (NBS). In this study, degenerate PCR primers designed to bind to DNA regions encoding conserved motifs within this domain were used to amplify NBS-encoding regions from Arachis spp. The Arachis spp. used were A. hypogaea var. Tatu and wild species that are known to be sources of disease resistance: A. cardenasii, A. duranensis, A. stenosperma and A. simpsonii. A total of 78 complete NBS-encoding regions were isolated, of which 63 had uninterrupted ORFs. Phylogenetic analysis of the Arachis NBS sequences derived in this study and other NBS sequences from Arabidopsis thaliana, Medicago trunculata, Glycine max, Lotus japonicus and Phaseolus vulgaris that are available in public databases This analysis indicates that most Arachis NBS sequences fall within legume-specific clades, some of which appear to have undergone extensive copy number expansions in the legumes. In addition, NBS motifs from A. thaliana and legumes were characterized. Differences in the TIR and non-TIR motifs were identified. The likely effect of these differences on the amplification of NBS-encoding sequences by PCR is discussed.

Keywords

Arachis, Base Sequence, Molecular Sequence Data, Arabidopsis, Genes, Plant, Polymerase Chain Reaction, Immunity, Innate, Phylogeny, DNA Primers, Plant Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%