Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Collection . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Collection . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions

Higher genome variability within metabolism genes associates with recurrent Clostridium difficile infection

Authors: Kulecka, Maria; Waker, Edyta; Ambrozkiewicz, Filip; Paziewska, Agnieszka; Skubisz, Karolina; Cybula, Patrycja; Łukasz Targoński; +3 Authors

Higher genome variability within metabolism genes associates with recurrent Clostridium difficile infection

Abstract

Abstract Background Clostridium difficile (C. difficile) is a major source of healthcare-associated infection with a high risk of recurrence, attributable to many factors such as usage of antibiotics, older age and immunocompromised status of the patients. C. difficile has also a highly diverse genome, which may contribute to its high virulence. Herein we examined whether the genome conservation, measured as non-synonymous to synonymous mutations ratio (dN/dS) in core genes, presence of single genes, plasmids and prophages increased the risk of reinfection in a subset of 134 C. difficile isolates from our previous study in a singly hemato-oncology ward. Methods C. difficile isolates were subjected to whole-genome sequencing (WGS) on Ion Torrent PGM sequencer. Genomes were assembled with MIRA5 and annotated with prokka and VRprofile. Logistic regression was used to asses the relationship between single gene presence and the odds of infection recurrence. DN/dS ratios were computed with codeml. Functional annotation was conducted with eggNOG-Mapper. Results We have found that the presence of certain genes, associated with carbon metabolism and oxidative phosphorylation, increased the odds of infection recurrence. More core genes were under positive selective pressure in recurrent disease isolates – they were mostly associated with the metabolism of aminoacids. Finally, prophage elements were more prevalent in single infection isolates and plasmids did not influence the odds of recurrence. Conclusions Our findings suggest higher genetic plasticity in isolates causing recurrent infection, associated mainly with metabolism. On the other hand, the presence of prophages seems to reduce the isolates’ virulence.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities