Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2007
versions View all 3 versions

Differential Recruitment of the Splicing Machinery during Transcription Predicts Genome-Wide Patterns of mRNA Splicing

Authors: Moore, Michael J.; Schwartzfarb, Elissa M.; Silver, Pamela A.; Yu, Michael C.;

Differential Recruitment of the Splicing Machinery during Transcription Predicts Genome-Wide Patterns of mRNA Splicing

Abstract

The splicing machinery associates with genes to facilitate efficient cotranscriptional mRNA processing. We have mapped these associations by genome localization analysis to ascertain how splicing is achieved and regulated on a system-wide scale. Our data show that factors important for intron recognition sample nascent mRNAs and are retained specifically at intron-containing genes via RNA-dependent interactions. Spliceosome assembly proceeds cotranscriptionally but completes posttranscriptionally in most cases. Some intron-containing genes were not bound by the spliceosome, including several developmentally regulated genes. On this basis, we predicted and verified regulated splicing and observed a role for nuclear mRNA surveillance in monitoring those events. Finally, we present evidence that cotranscriptional processing events determine the recruitment of specific mRNA export factors. Broadly, our results provide mechanistic insights into the coordinated regulation of transcription, mRNA processing, and nuclear export in executing complex gene expression programs.

Related Organizations
Keywords

Adenosine Triphosphatases, Cell Nucleus, Saccharomyces cerevisiae Proteins, Models, Genetic, Transcription, Genetic, RNA Splicing, Chromosome Mapping, Cell Biology, Saccharomyces cerevisiae, Ribonucleoproteins, Small Nuclear, Introns, Ribonucleoproteins, Gene Expression Regulation, Fungal, RNA, Small Nuclear, Spliceosomes, RNA, Messenger, Genome, Fungal, Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
hybrid