Restriction of Replication Fork Regression Activities by a Conserved SMC Complex
Restriction of Replication Fork Regression Activities by a Conserved SMC Complex
Conserved, multitasking DNA helicases mediate diverse DNA transactions and are relevant for human disease pathogenesis. These helicases and their regulation help maintain genome stability during DNA replication and repair. We show that the structural maintenance of chromosome complex Smc5-Smc6 restrains the replication fork regression activity of Mph1 helicase, but not its D loop disruptive activity. This regulatory mechanism enables flexibility in replication fork repair without interfering with DNA break repair. In vitro studies find that Smc5-Smc6 binds to a Mph1 region required for efficient fork regression, preventing assembly of Mph1 oligomers at the junction of DNA forks. In vivo impairment of this regulatory mechanism compensates for the inactivation of another fork regression helicase and increases reliance on joint DNA structure removal or avoidance. Our findings provide molecular insights into replication fork repair regulation and uncover a role of Smc5-Smc6 in directing Mph1 activity toward a specific biochemical outcome.
- Cancer Genomics Centre Netherlands
- Yale University United States
- Cornell University United States
- Erasmus University Medical Center Netherlands
- Erasmus University Rotterdam Netherlands
DNA Replication, Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Cell Cycle Proteins, Cell Biology, Saccharomyces cerevisiae, EMC MM-03-32-04, DEAD-box RNA Helicases, SDG 3 - Good Health and Well-being, Amino Acid Sequence, Protein Multimerization, DNA, Fungal, Molecular Biology, Protein Binding
DNA Replication, Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Cell Cycle Proteins, Cell Biology, Saccharomyces cerevisiae, EMC MM-03-32-04, DEAD-box RNA Helicases, SDG 3 - Good Health and Well-being, Amino Acid Sequence, Protein Multimerization, DNA, Fungal, Molecular Biology, Protein Binding
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
