Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurobiology of Agin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurobiology of Aging
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer's Disease

Authors: Li, Liu; Christina, Chan;

IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer's Disease

Abstract

Inflammatory response has been strongly implicated in the pathogenesis of numerous diseases, including Alzheimer's disease (AD). However, little is known about the molecular mechanisms initiating the generation of inflammatory molecules in the central nervous system, such as interleukin-1β (IL-1β). Previously we identified that palmitate can induce primary astrocytes to produce cytokines, causing AD-like changes in primary neurons. Here we investigated and identified that palmitate induced the activation of ice protease-activating factor (IPAF)-apoptosis-associated speck-like protein containing a caspase activation and recruitment domains (CARD) (ASC) inflammasome in astrocytes leading to the maturation of IL-1β, thereby implicating that not only pathogen-related factors can activate the IPAF-ASC inflammasome. Moreover, downregulating IPAF (which was found to be regulated by cAMP response element-binding protein) in astrocytes through silencing to decrease IL-1β secretion from the astrocytes reduced the generation of amyloid-β42 by primary neurons. Furthermore, the expression levels of IPAF and ASC were found significantly elevated in a subgroup of sporadic AD patients, suggesting an involvement of the IPAF-ASC inflammasome in the inflammatory response associated with AD, and thus could be a potential therapeutic target for AD.

Related Organizations
Keywords

Aged, 80 and over, Male, Neurons, Amyloid beta-Peptides, Inflammasomes, Calcium-Binding Proteins, Interleukin-1beta, Palmitates, Peptide Fragments, Rats, CARD Signaling Adaptor Proteins, Rats, Sprague-Dawley, Alzheimer Disease, Astrocytes, Animals, Humans, Female, Molecular Targeted Therapy, Inflammation Mediators, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 10%
bronze