Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Science
Article . 2011
versions View all 2 versions

New Genes in Drosophila Quickly Become Essential

Authors: Sidi Chen; Manyuan Long; Yong Zhang;

New Genes in Drosophila Quickly Become Essential

Abstract

Essential and New Genes can be broadly grouped into two sets on the basis of their contribution to fitness: those that are essential to the life of an organism and those that can be dispensed with. However, the degree of essentiality in evolutionarily “new” genes—genes that have originated in the recent past—is unknown. Chen et al. (p. 1682 ) investigated the origination and evolution of new genes within 12 Drosophila species and found, surprisingly, that over one-third of genes that have originated within the last 3.5 million years show essential function and that these functions are overrepresented during larval development. Approximately the same proportion of older genes was essential, although many of these genes also appear to show enrichment at later developmental stages. These findings challenge conventional wisdom that would claim that essential genes are ancient and conserved among animal taxa.

Related Organizations
Keywords

Genes, Essential, Time Factors, Gene Expression Profiling, Metamorphosis, Biological, Pupa, Gene Expression Regulation, Developmental, Genes, Insect, Evolution, Molecular, Drosophila melanogaster, Phenotype, Amino Acid Substitution, Gene Duplication, Larva, Animals, Drosophila Proteins, Wings, Animal, Drosophila, RNA Interference, Phylogeny, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    265
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
265
Top 1%
Top 10%
Top 1%
bronze