Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Titin‐cap associates with, and regulates secretion of, Myostatin

Authors: Ketan Patel; Mark Thomas; Ravi Kambadur; Mridula Sharma; Wayne G. Somers; Brett Langley; C. Fred Kemp; +1 Authors

Titin‐cap associates with, and regulates secretion of, Myostatin

Abstract

AbstractMyostatin, a secreted growth factor, is a key negative regulator of skeletal muscle growth. To identify modifiers of Myostatin function, we screened for Myostatin interacting proteins. Using a yeast two‐hybrid screen, we identified Titin‐cap (T‐cap) protein as interacting with Myostatin. T‐cap is a sarcomeric protein that binds to the N‐terminal domain of Titin and is a substrate of the titin kinase. Mammalian two‐hybrid studies, in vitro binding assays and protein truncations in the yeast two‐hybrid system verified the specific interaction between processed mature Myostatin and full‐length T‐cap. Analysis of protein–protein interaction using surface plasmon resonance (Biacore, Uppsala, Sweden) kinetics revealed a high affinity between Myostatin and T‐cap with a KD of 40 nM. When T‐cap was stably overexpressed in C2C12 myoblasts, the rate of cell proliferation was significantly increased. Western analyses showed that production and processing of Myostatin were not altered in cells overexpressing T‐cap, but an increase in the retention of mature Myostatin indicated that T‐cap may block Myostatin secretion. Bioassay for Myostatin confirmed that conditioned media from myoblasts overexpressing T‐cap contained lower levels of Myostatin. Given that Myostatin negatively regulates myoblast proliferation, the increase in proliferation observed in myoblasts overexpressing T‐cap could thus be due to reduced Myostatin secretion. These results suggest that T‐cap, by interacting with Myostatin, controls Myostatin secretion in myogenic precursor cells without affecting the processing step of precursor Myostatin. J. Cell. Physiol. 193: 120–131, 2002. © 2002 Wiley‐Liss, Inc.

Related Organizations
Keywords

Blotting, Western, Muscle Proteins, CHO Cells, Saccharomyces cerevisiae, Myostatin, Surface Plasmon Resonance, Transfection, Cell Line, Kinetics, Mice, Genes, Reporter, Transforming Growth Factor beta, Cricetinae, Culture Media, Conditioned, Animals, Connectin, Muscle, Skeletal, Cell Division, Protein Binding, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%