Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Systemat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical Systematics and Ecology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area

Authors: Wieslaw Oleszek; Anna Stochmal; Piotr Karolewski; Ana M Simonet; Francisco A Macias; Aldo Tava;

Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area

Abstract

Abstract Flavonoids in needles of Scots pine planted in 1912–1914 in Poland from seeds originating from different parts of Europe, were isolated, chemically characterised and analysed by HPLC. It was shown that flavonoid profiles were similar in all tested populations and were different from those previously reported for Scots pine seedlings. They included taxifolin, taxifolin 3′-O-glucoside, quercetin as well as quercetin 3-O-glucoside and 3′-O-glucoside. The quercetin 3-O-glucoside could be found only in a trace amount in all samples and quercetin 3′-O-glucoside appeared in all samples regardless their origin. The relative concentration of taxifolin 3′-O-glucoside, quercetin, taxifolin and total flavonoids showed dependence on the origin of seeds; needles from high latitude populations contained smaller amounts of these compounds. Presented data clearly indicate that Scots pine contain glycosidases specific for glycosylation at C-3′ rather than at C-3. Besides, they indicate that long lasting influence of similar environmental factors is not able to change genetic regulatory systems responsible for flavonoid biosynthesis.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Average